lengths for both axial and equatorial cyclohexyl p nitrobenzoates at low temperature for comparison purposes. Thus cis (1) and trans (2) 4-tertbutylcyclohexyl p-nitrobenzoate were prepared by treatment of a ca 1:1 mixture of cis and trans 4-tertbutylcyclohexanol (3) (as supplied by Aldrich) with p-nitrobenzoyl chloride in the presence of pyridine. The resulting mixture of isomers was separated by chromatography on silica gel. Crystals of (1) and (2) suitable for X-ray analysis were grown from pentane.

References
Hall, S. R. \& Stewart, J. M. (1989). Editors. Xtal2.6 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Robertson, G. B. \& Whimp, P. O. (1975). J. Am. Chem. Soc. 97, 1051-1058.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
White, J. M. \& Robertson, G. B. (1992). J. Org. Chem. 57, 4638-4644.

Acta Cryst. (1993). C49, 350-351

Structure of $\mathbf{4}^{\prime}$-Dimethylamino-4-methyl-4-azastilbenium \boldsymbol{p}-Toluenesulfonate Hydrate

By Garold L. Bryant Jr, Christopher P. Yakymyshyn* and Kevin R. Stewart
General Electric Company, Corporate Research and Development, Schenectady, NY 12301, USA

(Received 12 December 1991; accepted 18 May 1992)

Abstract

Dimethylamino- N -methyl-4-stilbazolium tosylate hydrate, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2}^{+} . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}^{-} . \mathrm{H}_{2} \mathrm{O}, M_{r}=$ 428.5, triclinic, $P \overline{1}, a=8.006$ (2), $b=9.548$ (2), $c=$ 14.647 (12) $\AA, \quad \alpha=80.34$ (2), $\quad \beta=80.30$ (2), $\quad \gamma=$ 77.98 (2) ${ }^{\circ}, V=1069.2 \AA^{3}, Z=2, D_{x}=1.330 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=1.75 \mathrm{~cm}^{-1}, \quad F(000)=$ $456, T=213 \mathrm{~K}, R=0.0649$ for 3754 unique reflections with $I>2 \sigma(I)$. The 4 -methyl-4'-dimethyl-amino-4-azastilbenium molecules pack head to tail within a sheet and are aligned in the opposite direction in the neighboring sheets. The phenyl rings in the p-toluenesulfonate groups lie at an angle of 72° relative to the aromatic rings in the azastilbenium groups. The axes for both molecules lie along the a axis. The rings for the azastilbenium group lie in the $a b$ plane and the phenyl ring of the p-tolunesulfonate group lies in the ac plane.

Experimental. Compound obtained by reaction of one equivalent of γ-picoline and one equivalent of methyl p-toluenesulfonate heated at reflux for 1 h in 11 of ethanol. Treatment with 1.1 equivalents of N, N-dimethylaminobenzaldehyde and 0.2 equivalents of piperidine yielded dark green crystals of the desired product. Large platelets of the reported crystals were grown by slow evaporation at 300 K from a saturated solution of 4 -methyl-4'-dimethylamino-4azastilbenium p-toluenesulfonate and 95% methanol/water solution. The crystal was sealed in a glass capillary for low-temperature data collection. Siemens $R 3 m / V$ upgrade of Nicolet $P 3 F$ automated

[^0]Table 1. Experimental details

Crystal habit and size (mm)	Plate $0.40 \times 0.24 \times 0.04$
Number of reflections, 2θ range $\left({ }^{\circ}\right)$ for	$29,13.3-36.6$
\quad lattice parameters	
Range of h, k, l	-1 to $10,-12$ to $12,-18$ to 19
Max. $\sin \theta / \lambda\left(A^{-1}\right)$	0.650
Check reflections	$1 \overline{13}, 104,31 \overline{3}$
$\quad \%$ variation	$5,5,3$
Reflections collected	4932
Unique observed reflections	3754
$R_{\text {int }}$	0.014
Observed criterion	$I>2 \sigma(I)$
Number of parameters	272
R	0.065
$w R$	0.070
S	1.34
Secondary-extinction parameter (χ)	$0.0007(4)$
$F^{*}=F\left[1+0.002 X F^{2} / \sin (2 \theta)\right]^{-1 / 4}$	
Weighting factor $(g), w^{-1}=\sigma^{2}(F)+g F^{2}$	0.0011
Fourier difference peaks, max., $\min .\left(\mathrm{e} A^{-3}\right)$	$0.47,-0.43$
Max. Δ / σ	0.002

diffractometer, $2 \theta-\theta$ scan with variable scan speeds. Structure solved by direct methods and refined on F using the SHELXTL-Plus (MicroVAX II) program package (Sheldrick, 1988). H atoms were placed in idealized positions and constrained to have $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and isotropic thermal parameters, $U=$ $0.08 \AA^{2}$. All non-H atoms treated as anisotropic. No absorption correction was applied. Details of the data collection are in Table 1.* Scattering factors from International Tables for X-ray Crystallography

[^1]© 1993 International Union of Crystallography

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$
U_{cq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
C(1)	- 1823 (3)	3238 (3)	8589 (2)	21 (1)
C(2)	-3553 (4)	3354 (4)	9207 (2)	31 (1)
C(3)	- 1732 (4)	3398 (3)	7621 (2)	23 (1)
C(4)	- 154 (3)	3282 (3)	7052 (2)	21 (1)
C(5)	1370 (3)	2989 (3)	7452 (2)	17 (1)
C(6)	1291 (3)	2849 (3)	8410 (2)	19 (1)
C(7)	-301 (4)	2972 (3)	8972 (2)	22 (1)
S(1)	3381 (1)	2784 (1)	6716 (1)	19 (1)
O(1)	3281 (3)	1797 (2)	6082 (2)	29 (1)
$\mathrm{O}(2)$	3519 (3)	4236 (2)	6222 (2)	27 (1)
O(3)	4683 (2)	2231 (2)	7332 (2)	27 (i)
$\mathrm{O}(4)$	6834 (3)	5026 (2)	5680 (2)	28 (1)
C(8)	3694 (3)	- 2213 (3)	7744 (2)	20 (1)
C(9)	2745 (3)	-953 (3)	8098 (2)	20 (1)
C(10)	1050 (3)	-862 (3)	8504 (2)	21 (1)
C(11)	198 (3)	- 2038 (3)	8579 (2)	18 (1)
$\mathrm{N}(1)$	- 1507 (3)	-1938(3)	8949 (2)	23 (1)
C(12)	-2284 (4)	- 3217 (3)	9141 (2)	26 (1)
C(13)	-2505 (4)	- 597 (3)	9237 (2)	29 (1)
C(14)	1156 (3)	-3325 (3)	8260 (2)	21 (1)
C(15)	2854 (3)	-3389 (3)	7850 (2)	22 (1)
C(16)	5436 (3)	- 2311 (3)	7249 (2)	21 (1)
C(17)	6343 (3)	- 1236 (3)	7047 (2)	20 (1)
C(18)	8102 (3)	-1371 (3)	6571 (2)	19 (1)
C(19)	9015 (4)	- 258 (3)	6539 (2)	21 (1)
C(20)	10701 (4)	-370 (3)	6129 (2)	21 (1)
$\mathrm{N}(2)$	11498 (3)	-1545 (3)	5728 (2)	21 (1)
C(21)	13318 (3)	-1665 (4)	5284 (2)	30 (1)
C(22)	10650 (4)	-2636 (3)	5723 (2)	25 (1)
C(23)	8978 (4)	-2578 (3)	6130 (2)	23 (1)

Table 3. Selected torsion angles $\left({ }^{\circ}\right)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(12) \quad 8.8(4) \quad \mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23) \quad 10.5$ (5)
$\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{C}(17) \quad 175.5$ (3) $\quad \mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(3) \quad 9.6$ (3)
$\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18) \quad 178.4$
(1974, Vol. IV). Atomic coordinates are contained in Table 2. The $\mathrm{C}-\mathrm{C}$ distances for the phenyl groups range between 1.378 and $1.412 \AA$. The cation molecule is planar with a mean deviation of $0.081 \AA$ from the 18 -atom least-squares plane. Selected torsion angles are in Table 3. Fig. 1 illustrates the molecule with the atomic numbering scheme employed. Fig. 2 illustrates the projected packing of the molecules viewed down the a axis.

Fig. 1. Thermal-ellipsoid (50% probability) plot showing the atomic numbering scheme.

Fig. 2. Projected packing plot viewed down the a axis.

Related literature. For additional information on related structures and chemistry, see Williams (1983) and Marder, Perry \& Schaefer (1989).

References

Marder, S. R., Perry, J. W. \& Schaffer, W. P. (1989). Science, 245, 626-628.
Sheldrick, G. M. (1988). ShELXTL-Plus88 Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Williams, D. J. (1983). Editor. Nonlinear Optical Properties of Organic and Polymeric Materials. ACS Symposium Series 233. Washington, DC: American Chemical Society.

Acta Cryst. (1993). C49, 351-354

Structure of 17-(3-Oxazolin-4-yl)androsta-4,16-dien-3-one

By A. Meetsma, D. van Leusen and A. M. van Leusen*
Department of Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 20 March 1992; accepted 24 June 1992)

[^2]0108-2701/93/020351-04\$06.00
rhombic, $P 2_{1} 2_{1} 2_{1}, a=7.715(5), b=12.033(1), c=$ 19.199 (1) $\AA, \quad V=1782.3$ (1) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.265 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \mu=0.7 \mathrm{~cm}^{-1}$, $F(000)=736, \quad T=130 \mathrm{~K}, \quad R(F)=0.044$ for 1984 © 1993 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55456 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR0417]

[^2]: Abstract. 17-(2,5-Dihydro-3-oxazol-4-yl)androsta-4,16-dien-3-one, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}, M_{r}=339.48$, ortho-

 * Author to whom correspondence should be addressed.

